
GLASS Design Document

Syntax Specification Files:
Syntax specification files are one of the two main inputs for GLASS. They are files
which contain the definitions for token regexes and grammar productions for a
particular user-defined language to be parsed. While the exact format has not yet
been decided for these files, an example of what the contents of these files may
look like is shown in Figure 4 Users will be able to create these files by hand or can
optionally use our GUI tool to assist them in creating and generating the syntax
specification file for a language.

Input/Outputs:
The GLASS architecture has a requirement of two inputs, being a syntax
specification file and a source code file. GLASS has multiple outputs throughout the
process which are chained together to build the process model shown in Figure 5.
One concept that we wish to include in our design is that the user may pick and
choose which parts of the program they would like to use at any given time, and
receive results only from intermediate parts of the architecture pipeline if the user
so chooses. These intermediary checkpoints include the following:

- The user can input a syntax specification file and the program will determine
if it is properly formatted (can be read without errors). If there are errors,
information about each error will be displayed to the user.

- The user can input a syntax specification file along with a source code file
and the program will determine if the source code can be parsed without
errors using the rules in the syntax specification. Otherwise, information
about each error will be displayed to the user.

- The user can input a syntax specification file along with a source code file
and, assuming the source code file is written according to the rules of the
syntax specification, the program will output a “XML-ized” version of the
original source code file.

Lexer Module:
The primary purpose of the lexer module is to break down the input source code
file into a token stream to be passed to the parser generator. The input is both
token definitions from a syntax specification file and a source code file. The
AddTokenRule and AddIgnoreRule are primary methods of the lexer module, adding
both “visible” or ignorable token rules to the lexer based on the token definitions
within the syntax specification (for example, comments are allowed tokens but are
not consumed by the language grammar, and would therefore be ignored tokens.



Keywords such as “if” might be visible tokens). Another primary method of the lexer
module is the lex method which drives the entire lexical analysis operation once all
token rules have been added to the lexer.

Parser Generator Module:
The primary purpose of the parser generator module is to create a parse tree using
the token stream and the grammar productions defined in the syntax specification
file. The parser generator uses the LR(1) parsing algorithm to parse the token
stream based on the defined grammar productions. The parser generator module
outputs a parse tree data structure which is to be passed to the XML Converter.

GUI Module:
The GUI module is an optional user interface that takes user input to generate a
syntax specification file used for our parser generator. The base screen shown in
Figure 1 is used to show the overview of the current grammar in a top-down form.
The two right buttons are used to add new expressions and components. Figure 2
demonstrates what will appear when a new expression is to be added. Once a user
is finished defining their grammar they can export it to a file which can be used as
input in our parser generator.

Figure 1� GUI PyQT Mock Up



Figure 2� Add Expression Menu Mock Up

Parse Tree XML Converter:
The primary purpose of this module is to create an XML file which is a copy of the
source input file with optional tags placed based on the parse tree. The input for
this module will be the parse tree generated by the parser module. In standard use,
the XML converter will be called immediately following the parser completing the
parsing of a particular source code file (see Figure 5). The module follows a node
visitor design pattern with a primary driving visit function which performs a
depth-first search of the parse tree checking to see each node within the tree
contains information about the original source code file, lexing, or parsing. All of
this information will be written to an XML tag. The module writes all of the
generated XML to a newly generated XML file, which is written to the system
locally. The idea is that the XML file with all tags removed will be identical to the
source file, which means the source code is fully preserved.

Macro System:
This module is an optional application of our GLASS tool used to modify the XML
produced by our process flow (see Figure 5). The macro system consists of a base
“AbstractMacro” class in which all macros are derived (see Figure 3). The reason this
is done is that we would like for advanced users to extend this to write their
macros. The primary method here is accomplished using the query function which
uses a user-defined XPath query to find a certain tag within the XML tree. In our
UML diagram you can see a FindReplaceMacro has already been defined which is



used to replace text within a tag specified this is a simple example implementation
of the base AbstractMacro class and is used by a FindReplaceMacroController
which is responsible for the execution of the entire macro sequence. The
architecture is defined in a way to make this system easily user-extensible. The idea
is that GLASS will ship with several more predefined macros.

Figure 3� Macro System UML Diagram

Figure 4� Example Syntax Specification Contents



Figure 5� System Architecture Diagram


