DEVELOPER MANUAL

for

GLASS

Version 0.2.1a

Prepared by: Tommy Galletta
Alexander Lockard

Advised by: Dr. Ryan Stansifer

Submitted to: Dr. Philip Chan
Instructor

November 25th, 2024

Contents

Contents 2
1 Introduction 4
1.1 TEITINOIOZY . c.cveeerieieiieeiiee ettt st st s s st s b neanae 4

1.2 Overview and BaCKGrOUNd..........ccveicrriniirinieicietietie et ssesssesseaessessssesssessisesseses 4

1.3 TOOIS USEA.....cuveieiniiiiciiiiic ettt s st st 5

1.4 “Under the HOOA ... s ss s sassses 5

2 Installation 7
2.1 Installing from Pre-Packaged DOWNIOAd.........ccceeurererrenieinienieinieseeieneiesneesseeseeesessesesseseseesssessesens 7

2.2 INSLAlliNG fTOIM SOUICE.....cecvemererriecrrierretieertetree ettt ettt sese et seaesseseseaneaessesessens 7
2.2.1 INStAllING GLASS COTEC....ccveureieerieerieieiieee ettt sstae s s st sstsessesssesssaessssessesssenns 7

2.2.2 InStalling GLASS GUL.....ccviiiiieiiciieiiiiiieienieisieieneessisessssssessssessesssessssessssessesssesssiessssesseseses 8

3 LR1 Parsing System 9
BL OVEIVIEW ..ottt bbb bbb R bbb 9

B.2 RESOUICES....iiiiiiiit bbb bbb bbb s bbb bbb bbb 9

4 Syntax Definition 10
4.1 OVETVIEW ...ttt e s s 10

4.2 SYNtAXDEIINITIONLEXETc.vueviiiiieieiiieicieie ettt sttt s s ssenae 10

4.3 SYNTAXDEIINITIONPATSETcvuiuiiniriceeireecireeieeeie ettt bbbttt st b et se bt beens 1

4.4 SyntaxDefinitioNREAAET ... 12

5 Interpretation Script 13
DL OVETVIEW... ettt sttt bbbt sttt st sese s tae s sese s eentaenesessessenns 13

5.2 SCTIPELEKET ..ttt ettt ettt st bbb bttt se et bttt ettt 13

5.3 SCTIPEPATSET ... ueteeiiaie ittt ettt sttt bbbttt bbbttt st b ettt b st b et b et ts 14

5.4 SCIIPLREAMETc.cveueinicieictrete ettt sttt ettt sttt bbbttt st s bbb e bt neats 16

6 GUI 18
6.1 EXECULING GLASS ...ttt ettt ettt a et seasens 18

6.2 Creating @ GIaININAT.......c.ovieereireireereeieeesessesttese et s et st s st s s s sss st ae st essessassenenses 18

1 Introduction

1.1 Terminology

The following terms are heavily used throughout the documentation, and thus are
defined below:

Syntax definition file - A GLASS input file which contains a series of token
and production definitions, which are then used to parse a source file.

Source file - A file whose contents is parsable by the rules defined in a
particular syntax definition file.

Interpretation script file - A GLASS input file which contains the
instructions on how to interpret the contents of a source file after it has
been parsed into a concrete parse tree using the rules defined in a particular
syntax definition file.

1.2 Overview and Background

The Generalized Language Abstraction and Scripting System (GLASS) is a tool
whose primary purpose is to assist in the parsing and interpretation of structured
files. GLASS utilizes the LR1 parsing algorithm to parse the contents of any source
file by following the production rules defined in a provided syntax definition file.
Once parsed, a source file's contents may then be interpreted by passing the parse
tree to an interpretation script, which is executed by GLASS and allows the user to
specify operations to be performed at each node of the parse tree.

GLASS was developed as a part of the Florida Institute of Technology CSE
4101/4102 Computer Science Projects courses. It was developed over the course of

six milestone “sprints” spanning two academic semesters. All materials generated
for these milestones are publicly available on the Project Materials page of the
GLASS website (https: /www.glass-project.com /project-materials).

1.3 Tools Used

The following tools were used in the development of GLASS:

Git / GitHub

Java

Apache Maven
Javascript / React
Launch4j

1.4 “Under the Hood”

The GLASS source code consists of several Java packages, each serving a
particular purpose in the project. These packages are as follows:

e api - Handles complex interactions with GLASS core systems, allowing for
more simple connections to tools such as the GLASS GUI.

e Ir1 - Contains all algorithms and structures necessary to produce parsers
using the LR1 parsing algorithm.

e managers - Contains Java classes which are used to maintain and manage the
overall execution of the GLASS system. This includes managers for things
such as command line arguments and logging systems.

e scripting - Handles all processes surrounding the interpretation of
interpretation script files.

https://www.glass-project.com/project-materials

e syntaxdef - Handles all processes for reading in and generating the parse
tables for languages defined in syntax definition files.

e utils - A general package containing miscellaneous utility functions.

The code within several of these packages is described in the sections that follow.

Syntax SOLl:rSceer c:joec:i?]:(lje n Interpreted script
Definition file file
language
Parser Generator Source Code Reader Interpreter
Syntax definition —— L »{ Generated lexer > Script file lexer
lexer
Y Y
Syntax definition Script file LR(1)
LR(1) parser Syntax tree parser
Y Y Y
Outputs...
Syntax definition Outputs Generated LR(1) Script file _ | User-defied
interpreter puts...——» parser interpreter / script output

Figure 1. System architecture diagram of the main GLASS system

2 Installation

2.1 Installing from Pre-Packaged Download

To install GLASS as a pre-packaged download, simply navigate to the Download

page of the GLASS website (https: //glass-project.com/download). After clicking

Download, a . zip file will be downloaded to your local system. Which you may
unzip and view the contents of. Within the unzipped download, you will see a jar
file named GLASS-[version-number].jar which can be run using java -jar

GLASS-[version-number]. jar.

The GLASS GUI can be run by simply double clicking the . exe file named
GLASS-GUI-[version—-number].exe

2.2 Installing from Source

2.2.1 Installing GLASS Core

Before installing GLASS from source, make sure you have a Java JDK of at least
version 20, Apache Maven, and Git installed on your system.

To install GLASS from source you will need to access the GLASS GitHub repository.
You may clone this repository by running git clone
https://www.githhub.com/GLASS-group/GLASS in your terminal. GLASS).
GLASS can then be compiled using mvn clean install and a . jar file will be
created in the target directory. The . jar file can be run by executing the command
java -jar target/GLASS-[version-number].jar within the root directory
of the cloned repository.

https://glass-project.com/download
https://github.com/GLASS-group/GLASS

2.2.2 Installing GLASS GUI

To install GLASS GUI from a source you will first need to build the GLASS core repo
using the steps listed in section 2.2.1, after this is complete you can build an uber jar
using mvn package once complete you will see a jar file output which can be ran
using java -jar target/GLASS-GUI-[version-number].jar

3 LR1 Parsing System

3.1 Overview

The GLASS 1r1 subpackage contains all of the code necessary to build a parse table
using the LR1 parsing algorithm. This algorithm is a left-to-right, rightmost
derivation algorithm with one lookahead terminal. This algorithm allows for a
bottom-up parsing approach, and is able to parse most common programming
languages (that is, a valid LR1 grammar exists for most common programming
languages).

This subpackages contains files such as Token, Production, Parser, Lexer,
ParseTable, and more, the details of which are described in the subsections that
follow.

3.2 Resources

Since the LR1 parsing algorithm is not our own, we figure it would simply be best to
provide links to pre-existing resources for learning about LR1 parsing. In fact, these
are the very materials we used to make this tool!

e Canonical LR parser - Wikipedia
e LR Parsing Table Construction - University of Michigan
e The LR(1) Table Construction - University of Delaware

https://en.wikipedia.org/wiki/Canonical_LR_parser
https://web.eecs.umich.edu/~weimerw/2009-4610/lectures/weimer-4610-09.pdf
https://www.eecis.udel.edu/~cavazos/cisc672-fall08/lectures/Lecture-10.pdf

4 Syntax Definition

4.1 Overview

Within GLASS syntax definition files are the medium through which a user

conveys the language (i.e. the structure of the file) that they wish to parse. In order
to parse syntax definition files, the already established LR1 parsing system is
leveraged by generating a lexer and parser with hardcoded rules which define the
structure of our syntax definition files.

4.2 SyntaxDefinitionLexer

The SyntaxDefinition contains the regex patterns for all of the possible token

types (or non-terminals) that may appear within a syntax definition file. These
include:

The keywords tokens, productions, name, active, and ignored
Braces and brackets, thin arrows (->), thick arrows (=>), and periods
Comments

o Regex pattern: #.*\r\n
Identifiers

o Regex pattern: [a-zA-Z][a-zA-Z0-9_]*[a-zA-Z0-9]*
Regex definitions

o Regex pattern: /.*[*\\1/

4.3 SyntaxDefinitionParser

The SyntaxDefinitionParser contains all of the grammar productions
necessary in order to parse the contents of an arbitrary syntax definition file. The
current grammar productions used are as follows:

S -> NAME_DECLARATION TOKEN_BLOCK PRODUCTION_BLOCK

S -> TOKEN_BLOCK PRODUCTION_BLOCK

NAME_DECLARATION -> “name” <identifier>

TOKEN_BLOCK -> *“tokens” *“{’ TOKEN_DECLARATION “}”
TOKEN_DECLARATION -> ACTIVE_TOKENS TOKEN_DECLARATION
TOKEN_DECLARATION -> IGNORED_TOKENS TOKEN_DECLARATION
TOKEN_DECLARATION -> ACTIVE_TOKEN TOKEN_ DECLARATION
TOKEN_DECLARATION -> IGNORED_TOKEN TOKEN_DECLARATION
TOKEN_DECLARATION -> ¢

ACTIVE_TOKENS -> “active” “{” TOKEN_LIST “}”

IGNORED_TOKENS -> “ignored” “{” TOKEN_LIST “}”

ACTIVE_TOKEN -> “active” TOKEN_DATA

IGNORED_TOKEN -> “ignored” TOKEN_DATA

TOKEN_LIST -> TOKEN_DATA TOKEN_LIST

TOKEN_LIST -> ¢

TOKEN_DATA -> <identifier> “->" <regex pattern>
PRODUCTION_BLOCK -> “productions” *“{" PRODUCTION DECLARATION “}”
PRODUCTION_DECLARATION -> PARENT PRODUCTION CHILD_ PRODUCTIONS
PRODUCTION_DECLARATION

PRODUCTION_DECLARATION -> ¢

e DPARENT_PRODUCTION -> <identifier> *“->" TERM_NONTERM_ LIST
PARENT_ PRODUCTION -> “[*“ <identifier> “]"” <identifier> *“->"
TERM_NONTERM_LIST

CHILD_ PRODUCTION -> *“=>" TERM_NONTERM LIST

CHILD_ PRODUCTION -> “[* <identifier> “]" *=>" TERM_NONTERM LIST
TERM_NONTERM_LIST -> TERM_NONTERM_LIST <identifier>
TERM_NONTERM_LIST -> <identifier>

10

4.4 SyntaxDefinitionReader

The SyntaxDefinitionReader is the class responsible for taking the parsed
contents of a syntax definition file, and interpreting the contents of the file to build
a parse table.

This process has two main steps, each of which contain multiple substeps:

e Interpret the syntax definition file contains

o

o

O

Determine defined tokens (terminals)
Determine defined productions
Determine defined non-terminals (from productions)

e Send found information to lexer and parser to be built

o

o
o
o

Add all found tokens to the new lexer

Allow the new parser to access the new lexer and its tokens
Add all found productions to the new parser

Begin the build process for the new parser

11

5 Interpretation Script

5.1 Overview

Once a source file is parsed using the parser generated from the
SyntaxDefinitionReader, the contents of the constructed parse tree need to be
interpreted. This is where the interpretation script system comes in. Interpretation
scripts allow the user to define what operations should be performed as the parse
trees for source files in their defined language are traversed.

To learn more about how interpretation scripts are written, read sections 4
and 5 of the documentation available on our project website

(https: /www.glass-project.com /documentation). The purpose of this manual is to

explain how the scripts themselves are interpreted.

5.2 ScriptLexer

The ScriptLexer contains the regex patterns for all of the possible token
types (or non-terminals) that may appear within an interpretation script file. These
include:

e The keywords production, function, return, if, else, true, false,
while, and new
e The following symbols: (,), [, 1,{, 3 +y v it = %, /[, [/, %, =, —>, ==, 1=, <,
> <=,>= ||, &&
e Floating point numbers
o Regex pattern: (\.[0-9]+) | ([0-9]+\.[0-9]%*)
e Integer values:
o Regex pattern: 0|[1-9][0-9]*

12

https://www.glass-project.com/documentation

e Identifiers:

o Regex pattern: [a-zA-Z][a-zA-Z0-9_]*[a-2zA-Z0-9]*
e String literals:

o Regex pattern: "(?:[A"\\\n\r]|\\[A\n\r])*"
e (Comments:

o Regex pattern: #.*(\r\n)?

5.3 ScriptParser

The ScriptParser contains all of the grammar productions necessary in order
to parse the contents of an arbitrary interpretation script file. The current grammar
productions used are as follows:

S -> STATEMENTS S

S -> PRODUCTION_FUNCTION_DECLARATION S

S —-> USER_FUNCTION_DECLARTATION S

S -> ¢

STATEMENTS -> STATEMENT STATEMENTS

STATEMENTS -> STATEMENT

STATEMENT -> FUNCTION_CALL SEMICOLON

STATEMENT -> IF_BLOCK

STATEMENT -> WHILE_BLOCK

STATEMENT -> VARIABLE_ ASSIGNMENT SEMICOLON

STATEMENT -> “return’” EXPRESSION SEMICOLON

STATEMENT -> OBJECT_ACCESS SEMICOLON

OBJECT_ACCESS -> OBJECT_INDICATOR ACCESSOR_LIST
EXPRESSION -> EXPRESSION LOGICAL_OR OR_CONDITION
EXPRESSION -> OR_CONDITION

OR_CONDITION -> OR_CONDITION LOGICAL_AND AND_CONDITION
OR_CONDITION -> AND_CONTIDION

AND_CONDITION -> AND CONDITION RELATION_OP NUMERICAL_EXPRESSION
AND_CONDITION -> NUMERICAL_EXPRESSION

RELATION_OP -> “=="

13

RELATION_OP -> “!-"

RELATION_OP -> “>"

RELATION_OP -> “<"

RELATION_OP -> “>="

RELATION_OP -> “<="

NUMERICAL_EXPRESSION -> NUMERICAL_EXPRESSION ADDOP TERM
NUMERICAL_EXPRESSION -> TERM

ADDOP -> “+"

ADDOP -> “-"

TERM -> TERM MULOP FACTOR

TERM -> FACTOR

MULOP -> “*"

MULOP -> *“/"

MULOP -> “//"

MULOP -> “%”

FACTOR -> OPT_NEGATIVE <integer>

FACTOR -> OPT_NETATIVE <float>

FACTOR -> OBJECT_INDICATOR ACCESSOR_LIST

FACTOR -> "true”

FACTOR -> “false”

FACTOR -> FUNCTION_CALL

FACTOR -> “(* EXPRESSION “)"

OPT_NEGATIVE -> “-"

OPT_NEGATIVE -> ¢

OBJECT_INDICATOR -> <identifier>

OBJECT_INDICATOR -> <string literal>
OBJECT_INDICATOR -> ARRAY_ LIT

OBJECT_INDICATOR -> NEW_OBJECT_DECLARATION
NEW_OBJECT_DECLARATION -> “new” <identifier> “(* PARAMETER LIST)"
ARRAY LIT -> “[*“ PARAMETER_LIST “]”

ACCESSOR_LIST -> “.” FUNCTION_CALL ACCESSOR_LIST
ACCESSOR_LIST -> “.” <identifier> ACCESSOR_LIST
ACCESSOR_LIST -> “[“ EXPRESSION “]” ACCESSOR_LIST
ACCESSOR_LIST -> ¢

FUNCTION_CALL -> <identifier> *(‘ PARAMETER_LIST “)”

14

PARAMETER_LIST -> EXPRESSION “,” PARAMETER_LIST

PARAMETER_LIST -> EXPRESSION

PARAMETER_LIST -> ¢

PRODUCTION_FUNCTION_DECLARATION -> “production” <identifier> “{“
BLOCK_CONTENTS *}”

PRODUCTION_FUNCTION_DECLARATION -> “production’” PRODUCTION_DEFINITION
#{* BLOCK_CONTENTS “3}"

USER_FUNCTION_DECLARATION -> “function” <identifier> *(“ PARAMETER_NAMES
#ym ugfu BL,OCK_CONTENTS “}”

PARAMETER NAMES -> <identifier> “,”, PARAMETER_ NAMES

PARAMETER_NAMES -> <identifier>

PARAMETER_NAMES -> ¢

PRODUCTION_DEFINITION -> <identifier> “->" TERM_NONTERM_LIST
TERM_NONTERM_LIST -> <identifier> TERM_NONTERM_LIST

TERM_NONTERM_LIST -> <identifier>

VARIABLE_ASSIGNMENT -> <identifier> “=" EXPRESSION

IF_BLOCK -> “if"” *“(“ EXPRESSION “)” “{* BLOCK_CONTENTS “}” ELSE_BLOCK
ELSE_BLOCK -> “else” “{” BLOCK “}”

ELSE_BLOCK -> ¢

WHILE_BLOCK -> “while” “(“ EXPRESSION “)” “{* BLOCK_CONTENTS “}”
BLOCK_CONTENTS -> STATEMENTS

BLOCK_CONTENTS -> ¢

5.4 ScriptReader

The ScriptReaderis the class responsible for taking the parsed contents of an

interpretation script file, and performing the actions specified by the user in the
script.

These actions include:

e (alling global or user-defined function, handled by the FunctionCall class
e Executing statements conditionally, handled by the IfStatement class

15

e Accessing object values or functions in an isolated statement, handled by the
ObjectAccessStatement class

e Returning values, handled by the ReturnStatement class

e Assigning a value to a variable, handled by the VariableAssignmentStatement
class

e Executing statements in a loop as long as a condition is true, handled by the
WhileStatement class

Any data values that are used within the interpretation script while interpreting its
contents are managed using the ScriptValue class, which is the class responsible for
handling the type of the data on the Java end so that the user does not have to
specify data types in their interpretation script.

In order to make the interpretation script code easily extensible, various parts of
the interpretation process are built from abstract classes or interfaces:

e All statement types used by the interpretation script system implement the
ScriptStatement interface

e All functions that can be executed globally within the interpretation script
system extend the ScriptFunction abstract class

e All object data types that can be used within the interpretation script system
(arrays, strings, etc.) extend the ScriptObject abstract class.

16

6 GUI

6.1 Executing GLASS

To execute GLASS from the GUI you must navigate to the Execution Window.
Afterwards you will first select a

6.2 Creating a Grammar

To create a grammar you will first need to navigate to the grammar creation
window. Upon entering this window you will see various options such as “Create
Terminal” and “Create Non Terminal' Terminals here coincide with tokens created
in the Syntax Definition files. You will define a Terminal using a name and a regular
expression on the other hand NonTerminals will only need to be defined with a
name. After defining all Terminal and NonTerminals, you will create your
productions by clicking the “Create Production” button. To create a production
select a NonTerminal from the left dropdown menu and select one or more
Terminal or NonTerminal symbols on the right-hand side. After selecting “Create”
you will see your defined production inside the Grammar Tree viewer in the
previous window. When you're happy with the grammar you have created you can
save the syntax file to your computer using the “Write Grammar to File” option.

17

