n

" Project Title: Generalized Language Abstraction

é" and Specification System (GLASS)

Team Members:

Tommy Galletta (tgalletta2022@my.fit.edu)
Alexander Lockard (alockard2022@my.fit.edu)

Faculty Advisor/Client:
Dr. Stansifer (rvan@fit.edu)
Florida Institute of Technology, Department of Computer Science

Date of Meeting with Client for Developing Plan:
8/30/24

Goals and Motivation

Goals

To examine and understand the inner workings of parser generators, both
from a theory standpoint as well as by examining pre-existing tools.

To build our own parser generator tool that attempts to resolve some of the
issues of pre-existing tools in an elegant manner.

To implement a GUI system and a script system around the parser generator
that gives the tool additional flexibility while maintaining ease of use.

Motivation

We hope to learn about the inner workings of parser generators, as well as
the theory that goes along with it.

We hope to develop a tool that addresses the complexities of other parser
generators by having a simpler way to specify syntax and semantics.

We hope to build a small extension for the parser generator, that being the
script system, that allows for parsed code to be interpreted to a certain
degree.


mailto:tgalletta2022@my.fit.edu
mailto:alockard2022@my.fit.edu
mailto:ryan@fit.edu

Approach

Grammar specification and parser generation

- Users can specify a desired grammar using a new grammar specification
syntax unique to GLASS, but based on the grammar specification languages
of other parser generators.

- GLASS can receive a grammar specification along with a source code file, and
parse it into a parse tree.

- If the user’s source files contain errors conflicting with the grammar
specification they provided, GLASS will provide a series of error messages to
the user to assist in debugging the source file.

Language binding utility APIs

- Users can use libraries for Python, Java, and potentially other languages to
execute functions inside of GLASS.

- Users can build parse trees from grammars that can be used in their own
applications.

GUI based grammar specification tool

- Users can build a grammar graphically through an interface.

- Users will interact with a visualization similar to a railroad /syntax diagram.

- Users can export the constructed diagram to a grammar file for use with
GLASS.

Script interpretation tool

- Users can write scripts which can be executed against a parse tree generated
by GLASS.

- Users can call predefined functions on the generated parse tree to
manipulate the parse tree’s contents.

- Users can use this script tool to write basic interpreters for their defined
language grammar.

Extensive documentation

- All features within GLASS are well documented on a publicly available,
actively maintained documentation website.

- Tutorial-like sections within the documentation allow users to quickly learn
new features of GLASS.



Novel Features

Integration of grammar definition file and language interpretation file

- Almost all parser generator tools have both the grammar definitions for a
user-defined language and the functionalities tied to those parts of the
grammar contained within a singular file. Our tool aims to separate grammar
definition and the language’s functionalities into two separate files, while
internally integrating them to perform the same operations that other parser
generator tools would allow.

- The end goal of this approach is to make the input files both more readable
and easier for the user to write themselves.

Algorithms and Tools

LR(1) Parsing Algorithm
- The LR(1) parsing algorithm is one of the two backbone algorithms in our
project. This algorithm allows us to parse through a large number of
grammars and generate a parse tree.
Parser Generation
- Critical to the function of our project, the LR(l) parser generator algorithm
allows us to construct an LR(1) parse table from a series of grammar
productions. These productions may be user-defined, allowing the user to
generate parse tables for their own grammars.
React
- We have already used React to build our project website, and will continue
using React as a means of providing our documentation in a well-organized
manner for users to access via the Internet.
Researched Tools
- While not directly used in our project, research into other parser generator
tools, such as ANTLR, bison, tree-sitter, lemon, JQ, and Visual BNF, has been
incredibly helpful in providing insight into how we should go about
developing our project.



Technical Challenges

Defining the structure of the syntax specification file
- A syntax specification language is something that all parser generators
already have, however with the goal of our tool being simplicity, we will have
to closely examine the pros and cons of the different specification languages
used within these tools to determine which choices we should implement in
our language and which we should avoid.
Making the parser generator
- Once we have an idea of what the structure of our syntax specification files
will be, we will have to actually construct the parser generator to allow our
tool to parse the specified language. This will require a dive into how parsers
work, as well as the theory that goes along with it.
Designing the script interpretation tool
- While interpreting the script files will probably not be a terribly difficult task,
we will have to decide which premade functions we should include in our
application, and then determine how to implement them.

Design

Source code file in
Interpretation
user defined
script file
language

Parser Generator Source Code Reader Interpreter

v
/ / r >
‘,7 +—»/ Generated lexer
) Outputs... v
Syntax g Syntax definition Interpretation
Definition file LR(1) parser file LR(1) parser

Outputs...
‘ Generated LR(1) User-defied script
- o-"pmsm |

Y

Syntax definition
lexer

Interpretation
file lexer




Evaluation

Ease of use

- In order to gauge how long it takes for new users to begin using our tool, we
will schedule times with several computer science students to “test drive”
our tool.

- Each user will begin by filling out a small survey about their knowledge
related to our tool (a person who has already taken formal languages is more
likely to understand the concept of grammars).

- Then, the user will be asked to perform a series of predefined tasks, having
full access to the documentation we provide for the tool. We will note how
long it takes each user to complete each task.

User survey
- After all tasks have been completed and completion times have been
recorded, there will be a short user survey asking about their experience
using the tool, as well as potential changes the user would like to see.

Satisfying different use cases
- Part of our original inspiration for this project was two different use cases
that seem to have a potential common solution. We will analyze if the final
product is able to satisfy these use cases sufficiently, and if using the tool
makes achieving the goal of these use cases easier than other approaches.

Progress Summary

Feature Completion % Todo
Grammar specification and Debugging and code cleaning,
parser generation 90% potential room for options and
ease of use features
Language binding utility 0% Fully implement Java and
APIs ° Python bindings

GUI based grammar 0% Create and integrate the GUI
specification tool ? tool

Fully implement script
interpretation

Script interpretation tool 10%

Extensive documentation Complete documentation for
existing features, transfer
documentation to project
website

20%




Milestone 4 (September 30th)

Documentation
- Continue writing documentation
- Host documentation on project website

- Create GUI based tool for creating syntax definitions
- Integrate GUI such that generated syntax definitions can be immediately
used to parse a source code file

Debugging / Code cleaning
- Debug and clean code for pre-existing systems
- Ensure GitHub repo is well-structured

Ease of use features
- Implement features that allow for easier debugging of “broken” grammars
- Implement default values and settings that can be overridden for syntax
definitions

Milestone 5 (October 28th)

Main system GUI
- Implement GUI for main system interactions (selecting syntax definition,
source code, and interpretation script files)

Script interpretation
- Implement a system to read, parse, and process a user-defined script to be
applied to a parse tree. The actions defined in the script should be executed
at the appropriate time during the traversal of the parse tree.

Documentation
- Update and extend documentation on website as appropriate

Poster
- Create presentation poster



Milestone 6 (November 25th)

Evaluation
- Conduct evaluation and analyze results

Finalized Project Items
- Test/demo of the entire system
- Create user/developer manual
- Create demo video

Milestone 4 Task Matrix:

Task Tommy Xander

Continue writing
documentation and host it 75% 25%
on project website

GUI-based syntax

O, O,
specification tool 10% 90%
Pebug / clean currently 759 259%
implemented systems
Additional ease of use 759 25%

features

Description of Milestone 4 Tasks

Continue writing documentation and host it on project website

- Currently, any documentation we have written exists in a Google Doc. The
goal for this task is to further flesh out the documentation (especially the
tutorial-like portions of it), and to move this documentation to our project
website.

- The documentation will be structured in a way such that the sections of the
documentation will be listed on the left side of the webpage, with
subsections accessible via dropdown menus on a per-section basis.



GUI-based syntax specification tool
- For the purpose of creating grammar in a more interactive way, we will
create a drag and drop GUI tool for defining the syntax of a language.

Debug / clean currently implemented systems
- We will ensure that the project’s file structure as well as the structure of
individual code files is clean, and that any known bugs are removed, as well
as attempting to locate more bugs and fixing them.

Additional ease of use features
- As described in the Milestone 4 section above, features such as additional
debug options and default values will be added with the goal of expediting
the process of creating grammars.

Approval From Faculty Advisor

I have discussed with the team and approve this project plan. I will evaluate
the progress and assign a grade for each of the three milestones.

Signature: Date:




