
GLASS
Project Plan - Semester Two

Team: Tommy Galletta, Alexander Lockard
Faculty Advisor: Dr. Stansifer



2

Goals and Motivation

Goals:
- To examine and understand the inner 

workings of parser generators, both from 
a theory standpoint as well as by 
examining pre-existing tools.

- To build our own parser generator tool 
that attempts to resolve some of the 
issues of pre-existing tools in an elegant 
manner.

- To implement a GUI system and a script 
system around the parser generator that 
gives the tool additional flexibility while 
maintaining ease of use.

Motivation:

- We hope to learn about the inner 
workings of parser generators, as well as 
the theory that goes along with it.

- We hope to develop a tool that addresses 
the complexities of other parser 
generators by having a simpler way to 
specify syntax and semantics.

- We hope to build a small extension for 
the parser generator, that being the script 
system, that allows for parsed code to be 
interpreted to a certain degree.



Design

3



Approach

- Grammar specification and parser generation

- Language binding utility APIs

- GUI based grammar specification tool

- Interpretatio script parsing tool

- Extensive documentation

4



Technical Challenges

Defining the structure of the syntax specification file
- With the goal of our tool being simplicity, we will have to closely examine the different 

specification languages used within parser generator tools to determine which choices we 
should implement in our language and which we should avoid.

Making the parser generator
- We will have to construct the parser generator to allow our tool to parse a specified language. 

This will require a dive into how parsers work, as well as the theory that goes along with it.

Designing the script interpretation tool
- We will have to decide which built-in functions we should include in our application, and then 

determine how to implement them.

5



Novel Features

Integration of grammar definition file and
language interpretation file

- Our tool aims to separate grammar definition and a language’s 
functionalities into two separate files, while internally 
integrating them to perform the same operations that other 
parser generator tools would allow.

- The end goal of this approach is to make the input files both 
more readable and easier for the user to write themselves.

6



Algorithms and Tools

LR(1) Parsing Algorithm
- Allows us to parse through a large number of grammars and generate a parse tree.

Parser Generation
- Allows us to construct an LR(1) parse table from a series of grammar productions. These productions 

may be user-defined, allowing the user to generate parse tables for their own grammars.

React
- We will use React as a means of providing our documentation in a well-organized manner for users to 

access via the Internet.

Researched Tools
- NTLR, bison, tree-sitter, lemon, JQ, and Visual BNF have been incredibly helpful in providing insight into 

how we should go about developing our project.

7



Evaluation

Ease of use
- We will have several computer science students to “test drive” our tool. They will first fill out a 

small survey about their knowledge related to our tool. Then, the user will be asked to perform a 
series of predefined tasks, having full access to the documentation we provide for the tool. We 
will note how long it takes each user to complete each task.

User survey
- After all tasks have been completed and completion times have been recorded, there will be a 

short user survey asking about their experience using the tool.

Satisfying different use cases
- Can we use our tools to satisfy the use cases we originally set out to develop it for?

8



Progress Summary

9

Feature Completion % Todo

Grammar specification 
and parser generation 90%

Debugging and code 
cleaning, potential room 
for options and ease of 
use features

Language binding utility 
APIs 0% Fully implement Java and 

Python bindings

GUI based grammar 
specification tool 0% Create and integrate the 

GUI tool

Script interpretation tool 10% Fully implement script 
interpretation

Extensive documentation

20%

Complete documentation 
for existing features, 
transfer documentation 
to project website



Milestone 4

Documentation
- Continue writing documentation
- Host documentation on project website

GUI
- Create GUI based tool for creating syntax 

definitions
- Integrate GUI such that generated syntax 

definitions can be immediately used to parse 
a source code file

10

Debugging / Code cleaning
- Debug and clean code for pre-existing 

systems
- Ensure GitHub repo is well-structured

Ease of use features
- Implement features that allow for easier 

debugging of “broken” grammars
- Implement default values and settings that 

can be overridden for syntax definitions



Milestone 5

Main system GUI
- Implement GUI for main system interactions 

(selecting syntax definition, source code, and 
interpretation script files)

Script interpretation
- Implement a system to read, parse, and 

process a user-defined script to be applied to 
a parse tree. The actions defined in the script 
should be executed at the appropriate time 
during the traversal of the parse tree.

11

Documentation
- Update and extend documentation on 

website as appropriate

Poster
- Create presentation poster



Milestone 5

Main system GUI

Implement GUI for main system interactions (selecting syntax definition, source code, and interpretation 
script files)

Script interpretation

Implement a system to read, parse, and process a user-defined script to be applied to a parse tree. The 
actions defined in the script should be executed at the appropriate time during the traversal of the parse tree.

Documentation

Update and extend documentation on website as appropriate

Poster

Create presentation poster

12



Milestone 6

Evaluation
- Conduct evaluation and analyze results

Finalized Project Items
- Test/demo of the entire system
- Create user/developer manual
- Create demo video

13



Milestone 4 Task Matrix

14

Task Tommy Xander

Continue writing 
documentation and host it 
on project website

75% 25%

GUI-based syntax 
specification tool 10% 90%

Debug / clean currently 
implemented systems 75% 25%

Additional ease of use 
features 75% 25%



Questions?


