
GLASS
Generalized Language Abstraction and 

Specification System

Team: Tommy Galletta, Alexander Lockard
Faculty Advisor: Dr. Stansifer



Goals and Motivation

Goals:

- To examine and understand the inner 
workings of parser generators, both from 
theoretical and practical standpoints.

- To build our own parser generator tool 
that attempts to resolve some issues with 
pre-existing tools in an elegant manner.

- To implement a GUI system and a macro 
system around the parser generator that 
gives the tool additional flexibility and 
ease of use.

2

Motivation:

- We hope to learn about the inner 
workings of parser generators, and the 
theory that goes with it.

- We hope to develop a tool that addresses 
the complexities of other parser 
generators by having a simpler way to 
specify syntax and semantics.

- We hope to build a small extension for 
the parser generator (the macro system) 
that can manipulate parsed code in a 
variety of ways.



Approach

Grammar specification and parser generation
- Users can specify a desired grammar using GLASS’s grammar specification language, based on 

the grammar specification languages of other parser generators.

- GLASS can receive a grammar specification along with a source code file, and parsing it into an 
XML-like parse tree.

- If the user’s source file contain errors conflicting with their grammar specification, GLASS will 
provide a series of error messages to assist in debugging.

3



Approach (cont.)

GUI based grammar specification tool
- Users can build a grammar graphically through an interface. 

- Users will interact with a visualization similar to a railroad/syntax diagram. 

- Users will export the constructed diagram to a corresponding grammar file for use with GLASS.

Syntax markup language generation
- GLASS will output an XML-like markup representation of the input file corresponding to 

user-defined tokens.

- Users can specify which tokens/grammars to markup (eg. ignore whitespace tokens)

- Users can write the XML to a specified file to use GLASS with other applications.
4



Approach (cont.)

Querying and macro-based refactoring tool
- Users can execute queries on the XML-like tree to search the input file.

- Users can call predefined macros on the XML-like tree to perform transformations on specified 
tokens.

- Users can specify macros based on basic logical expressions through the query system.

Extensive documentation
- All features within GLASS are well documented on a publicly available, actively maintained 

documentation website.

- Tutorial-like sections within the documentation allow users to quickly learn GLASS.

5



Novel Features

Querying and macro-based refactoring tool

While tools already exist for markup language-based source code recommendation such as 
srcML and pyRegurgitator, GLASS is the only tool able to do this for user-specified grammars. 
GLASS can be used as a tool for source code representation to query any language defined by 
the user.

6



Technical Challenges

Defining the structure of the syntax specification file

A syntax specification language is something that all parser generators already have, however with 
the goal of our tool being simplicity, we will have to closely examine the pros and cons of the different 
specification languages used within these tools to determine which choices we should implement in 
our language and which we should avoid.

Making the parser generator

After defining the structure of our syntax specification files, we will have to construct the parser 
generator to allow our tool to parse specified languages. This will require a dive into how parsers 
work, as well as the theory that goes along with it.

7



Technical Challenges (cont.)

Designing the macro-based refactoring tool

While interpreting the macro files will probably not be a terribly difficult task, we will have to 
decide which macro functions we should include in our application, and then determine how to 
implement the functionalities for each macro function.

8



Milestone One

- Compare and select the best programming language for writing this tool in. Possible languages 
include Java, Python, C++, and Rust.

- Investigate the grammar specification languages in other parser generator tools.

- Compare and select tools, libraries, or packages for handling XML.

- Compare and select a tool for building the GUI.

- A “Hello world” example for the chosen programming language, including several benchmark 
tests, for example speed measurements for graph traversal algorithms.

- A “Hello World” example for choosing the GUI framework. An example app implemented from a 
mockup to demonstrate the full features of the framework.

9



Milestone One (cont.)

- A “Hello World” example for the framework of text ingestion, including benchmarks for ingestion 
and an example of handling errors within the file.

- Based on the investigation described above, develop a design pattern for the structure of the 
defined grammar file.

- Research existing algorithms for parsing a file given grammar (e.g. LALR, LR, and LL algorithms). 
Select algorithms from research and provide examples of why it is “better” than the others.

- Develop a design pattern for how the macro-based refactoring tool will work. Provide a “Hello 
world” example of the refactoring in action. (not code just a written example)

- Create requirements documents for both the GUI tool and parser generator.

- Create a design document for both the GUI tool and parser generator.

- Create a test document for the parser.

10



Milestone Two

- Reach checkpoint for the parser. At this point, the overall design should be 
created in a modular format. All components should be easily extensible.

- Implement, test, and demo outputting to XML-like format

11



Milestone Three

- Implement, test, and demo final parser generator

- Implement, test, and demo GUI tool for outputting grammar files based on 
user input.

12



Task Matrix

13

Task Tommy Xander

Compare and select 
technical tools

Grammar specification languages, 
programming languages

XML, GUI

“Hello world” demos Grammar specification languages, 
programming languages

XML, GUI

Resolve technical 
challenges

Defining syntax specification 
structure, syntax specification to 
parse tree algorithm

Designing the macro-based 
refactoring tool

Compare and select 
collaboration tools N/A (tools already decided)

Requirements Document 80% 20%

Design Document 20% 80%

Test Plan 80% 20%


