)

GLASS

Milestone Three Progress Report

Team: Tommy Galletta, Alexander Lockard
Faculty Advisor: Dr. Stansifer

Milestone Three Task Matrix

Task Completion % | Tommy | Xander Todo

Syntax

specification file 100% 85% 15%

interpretation

Basic macro Implement basic

interpretation / 50% 10% 40% maclros. Con‘qnuef

XML manipulation implementation o
macro interpreter.

Continued research

of parser 100% 50% 50%

generators

Beoin Find a way to easily

dogumentation 90% 45% 45% put documentation

on website

Faculty Advisor Feedback I\‘/1

- Advisor continues to be happy with the progress made on the project.
- Advisor decided it would be best for us to ditch XML as an intermediate output.
- We plan to still allow for XML-ized output to be generated via the macro system.

- Advisor sees the separation of the grammar (syntax specification) and the “piggybacking” (macro
system) to be the biggest novel feature of our project.

- Advisor hopes we will continue working on the project over the summer (that is our plan).

Task Discussion (continued)

Token regex is simply a regex pattern that will be used to identify whether or not

Begi n D oc u m e ntatio n some input matches a given token.

For example, in the following token declaration:

- The beginnings of our documentation have
been created
- Currently within a Google Doc
- We plan to transfer all of the contents States that any string that contains a series of a's (i.e. aaaaa) could be considered
to be hosted on our project website by [RSSEEt
the end of the next milestone. Alternatively, tokens of the same type (visible or invisible) can be declared

within a block, where the type only needs to be typed once, as shown below:

visible {
FRUIT ONE: /apple/
FRUIT _TWO: /banana/
FRUIT_THREE: /cherry/

Task Discussion

Syntax Specification File Interpretation
Fully implemented
Built off of the parser generator system

Demo later on

while (nodeStack.size() > ©) {
ParserNode currentNode = nodeStack.removeFirst();
String currentName = currentNode.getName();

if (currentName.equals("VISIBLE")) currentTokenType = TokenType.VISIBLE;
if (currentName.equals("INVISIBLE")) currentTokenType = TokenType.INVISIBLE;
if (currentName.equals("TOKEN_DATA")) currentIdentifierUse = IdentifierUse.TOKEN_NAME;
if (currentName.equals("PARENT_PRODUCTION")) {
if (currentIdentifierUse == IdentifierUse.PRODUCTION_RIGHT) {
Production newProd = new Production(currentProductionLeft, currentProductionRight,
generatedlLexer, currentProductionID);
generatedParser.addProduction(newProd) ;
definedProductions.add(newProd);
currentProductionRight.clear();
}
currentIdentifierUse = IdentifierUse.PRODUCTION_LEFT;
currentProductionRight = new ArraylList<String>();

Iy
if (currentName.equals("TERM_NONTERM_LIST")) currentIdentifierUse = IdentifierUse.PRODUCTION_RIGHT;

if (currentName.equals("IDENTIFIER")) {

String nodeContents = ((TerminalNode) currentNode).getSequence();

if (currentIdentifierUse == IdentifierUse.TOKEN_NAME)
currentTokenName = nodeContents;

else if (currentIdentifierUse == IdentifierUse.PRODUCTION_LEFT)
currentProductionLeft = nodeContents;

else if (currentIdentifierUse == IdentifierUse.PRODUCTION_RIGHT) {
currentProductionRight.add(nodeContents);

Task Discussion (continued)

path <
3 3 3 replacelregex. "new"
Basic macro Interpretation LR Ee
- Solidified “alpha” macro specification file grammar
F IDENTIFIER £

- Started work on macro specification file interpreter a = .find{regex)

- Discussed basic macro ideas ' .repl;

EE°TT EE#
a = .euvaluated"T T' 3TAR">
if a:
macrolC{E E' T T" F>
XML has been mostly scrapped for now macroC(this.parent .path)

macrolCo) 4
.replaced "new”

Task Discussion (continued) I\‘/1

Continued research of parser generators
- Brief Investigation of JQ complete (not a parser generator, more like a macro system)

- Brief Investigation of Visual BNF complete (not a parser generator, but useful for inspiration for
our GUI)

- We will likely continue with a few more investigations

Demo Time!

Milestone Four Plan

Task

Tommy

Xander

Add options and ease of
use features

Implement debugging
features

Add settings for syntax
specification files

GUI-based syntax
specification system

Debug and assist with
creating GUI system

Implement main GUI
system

Continue writing
documentation and host
it on project website

Proofreading /editing
documentation, getting
documentation on web

Writing documentation

Continued research of
other tools

Investigate 1-2 parser
generator tools

Investigate 1-2 parser
generator tools

Debugging currently
implemented systems

Both team members will work to debug all
implemented features

Disclaimer: Some, if not most of these tasks will be tackled during the summer. The actual Milestone Four plan come fall will likely be different.

10

Discussion of Planned Tasks "\/UL

Add Options and Ease Of Use Features

To help with making our tool easier to use in “common” cases, we will included certain features
which are enabled by default
- These features will be able to be enabled or disabled at will via the syntax specification file

An optional debug argument will be added to GLASS, allowing for a debug report to be written
out when the program is run

11

Discussion of Planned Tasks

Continue writing documentation
and host it on project website

- We want to work continuously to ensure
that our all features of our tool are well
documented

- We will find a tool (potential option on the
right) that will allow us to easily transfer our
Google Doc documentation to our website

Introduction

4 Docusaurus will help you ship a beautiful documentation site in no time.

® Building a custom tech stack is expensive. Instead, focus on your content and just write Markdown files.
* Ready for more? Use advanced features like versioning, i18n, search and theme customizations.

& Check the best Docusaurus sites for inspiration and read some testimonials.

@ Docusaurus is a static-site generator. It builds a single-page application with fast client-side navigation, leveraging the full power
of React to make your site interactive. It provides out-of-the-box documentation features but can be used to create any kind of site

(personal website, product, blog, marketing landing pages, etc).

12

Discussion of Planned Tasks (continued) ""\)

GUI-based Syntax Specification System EEEEEs

To allow for easier grammar creation, we will
create a GUI based tool with drag-and-drop style
features to create productions by joining together
“symbol nodes”

After the user has created a grammar, a syntax
specification file containing their grammar will be
generated

13

Discussion of Planned Tasks (continued) "\)

Continued research of other tools

Same as last milestone, we feel that this continued research will help us ensure that we are
implementing the right features while also maintaining a level of simplicity and avoiding
confusing notation.

Debugging currently implemented systems

Simply put, we don't want our program to unexpectedly crash. Thorough testing will be done to
ensure that our program rarely crashes, and in the event that it does, some useful error
message is printed to the user.

14

Questions?

