
Project Title: Generalized Language Abstraction
and Specification System (GLASS)

Team Members:
Tommy Galletta (tgalletta2022@my.fit.edu)
Alexander Lockard (alockard2022@my.fit.edu)

Faculty Advisor/Client:
Dr. Stansifer (ryan@fit.edu)

Florida Institute of Technology, Department of Computer Science

Current Milestone Progress Matrix:

Task Completion % Tommy Xander Todo

Investigate tools 85% 40% 45% Investigate other
parser generators

Hello world demo 85% 45% 40% Parser generator
demos

Resolve technical
challenges 60% 30% 30% Continued research

Requirements
Document 100% 80% 20%

Design Document 100% 20% 80%

Test Plan 100% 80% 20%

mailto:tgalletta2022@my.fit.edu
mailto:alockard2022@my.fit.edu
mailto:ryan@fit.edu


Task Discussion:

Investigate tools:
- Choosing a programming language: Java, Rust, Python, and C++ were all

investigated and evaluated based on a variety of factors in order to decide
which programming language would be best for writing the project in.
Ultimately, Java was chosen.

- Comparing existing parser generator tools: This task we decided to hold off
on a little bit, as we felt it was more important to get the core functionality of
the parser generator working first, before investigating tools and
determining the best structure for our syntax specification format.

- Finding XML tools to use: Several XML tools were investigated, and we have
settled on a set of viable tools that we will pick from to use. Technical issues
may prevent us from using certain tools, which is why we choose to keep our
options open for the moment.

- Finding GUI tools to use: Similar to above, we have decided on a set of tools
that would be good options for creating our GUI, but we have decided to
push back the creation of the GUI in our original plan as making the core
functionality is more important to handle first. We will be choosing which
GUI tool to use at a later date, but have noted the viable options.

Hello world demos:
- Programming language demos: Demo programs were created in Java, Rust,

Python, and C++ for testing speed and memory usage for each programming
language in several different use cases.

- The results of these demo tests can be found here
- The source code for all demos made can be found here

- Parser generator demos: Similar to above, this investigation will simply occur
at a later date.

- XML demo: Small demos were created using several different XML tools to
test how effectively these tools could be used to manipulate XML in a variety
of ways.

- GUI demo: As a test of a few GUI tools, some basic demos were made
containing, a button, a label, and some basic drawings on a canvas

https://glass-project.com/files/milestone_1/programming_language_analysis.pdf
https://github.com/GLASS-group/GLASS-Progamming-Language-Analysis


Resolve technical challenges:
- Defining syntax specification format: A decent amount of discussions and

research occurred around this topic during Milestone One, and while we
have a rough idea of what we want the syntax specification files to look like,
we feel that until we fully cement the format of these files, this task should
remain unresolved.

- Syntax specification to parse tree: This basically boils down to making a
parser for the syntax specification files. This is currently in the works, with
great progress already made, and should be done soon.

- Designing the macro-based refactoring tool: This task was left mostly
untouched, besides texting XML manipulation. The set of functions we will
allow within the macro systems is still yet to be determined. Though will be
determined by the end of the semester.

Requirements document:
- Created requirements document, which outlines functional, interface, and

performance requirements, among others.

Design document:
- Created design document, which includes a UML diagram for the entire

GLASS pipeline, as well as a mock-up sketch of the GUI we plan to make.

Test plan:
- Created test plan document, which includes a list of tests that we plan to

perform to help identify bugs, and tests we will perform to evaluate our tool
in categories such as intuitiveness and memory efficiency.

Team Member Contributions:

Tommy Galletta:
- Researched and compared programming languages (Java, Rust, Python, C++).

- This included writing several test programs in each of the four
programming languages to test things such as memory and time
efficiency in a variety of scenarios.

- Researched parsing algorithms including LL, LR, and LALR algorithms to
decide on which parsing algorithm we want to use.

- After LR(1) was decided on, began work on making the LR(1) parser generator
Has so far implemented calculations for first sets, closures, and transition
states.

- Worked on requirements, design, and test plan documents



Alexander Lockard:
- Investigated several GUI tools to find the best options for creating the GUI

tool in the future.
- This included making a small demo using each tool of a GUI containing

basic things such as a button, label, and canvas with lines drawn on it.
- Researched parsing algorithms including LL, LR, and LALR algorithms to

decide on which parsing algorithm we want to use.
- Created a small demo of potential XML manipulations that may be

implemented as functions for the macro system.
- Worked on requirements, design, and test plan documents

Milestone Two Plan:

Task Tommy Xander

Parser generator
intermediary checkpoint

Implement core parser
generator features

Test and demo parser
generator

Investigate other parser
generators

Investigate 2-3 parser
generator tools

Investigate 2-3 parser
generator tools

Solidify syntax
specification format
“version one”

Groups members will work together in order to
ensure all necessary features are implemented

Implement, test, and
demo XML output

Test and demo XML
output

Implement core XML
manipulations for macros

Discussion of Planned Tasks:

Parser generator intermediary checkpoint:
- By the end of Milestone Two, our parser generator should be mostly working.

The syntax specification file format may be very clunky by this point, but that
will be resolved during future tasks. Also, care will be taken to ensure that all
components within the code are written in a modular fashion.



Investigate other parser generators:
- We want to take some time to investigate other parser tools, see what they

get “right” and “wrong”, what features in other tools feel intuitive and what
feels clunky or overcomplicated. We will investigate 4-6 tools, and will
document the pros and cons of their different features.

Solidify syntax specification format “version one”:
- Now that the strengths and weaknesses of other parser generator tools have

been investigated, we will move into designing the first “official” version of
the syntax specification format we wish to use in our tool. We will use the
research done on the syntax specification formats in other tools as
inspiration for the structure of our syntax specification files.

Implement, test, and demo XML output:
- Being able to parse a user-defined programming language is only half the

battle. By the end of Milestone Two we hope to also output an XML file
containing the original source code inputted by the user, marked up in a tree
structure based on the structure of the user-specified grammar for the
language.

Client Feedback on Current Milestone:
- See Faculty Advisor Feedback below

Milestone One Faculty Advisor/Client Meeting Dates:
- January 31st
- February 7th
- February 14th

Faculty Advisor Feedback:

Investigate tools:
- Advisor agreed that Java was a good choice of programming language. Not

only are we already very familiar with the language, but the advisor also feels
that time efficiency is probably the most important thing to focus on with
this tool.



- Advisor emphasized the importance of investigating other parser generator
tools to find what “works” and what “doesn’t work” within each tool before
we solidify the design for the components users will have to write
themselves, such as the syntax specification format.

- Advisor was not incredibly familiar with the tools we had mentioned for XML
handling, but recommended that we look into tools such as XSLT either for
inspiration for our own implementation or to utilize in the creation of our
project.

Hello world demos:
- Some of the demos created during this milestone were simply for research

purposes (such as the programming language demos) and were not shown
directly to the advisor. However, two demos were shown to the advisor.

- A demo of the first, closure, and transition functions for an LR(1) parser was
shown to the advisor, who was quite pleased with the results.

- A demo of basic XML manipulation was shown to the advisor, which led into
the discussion of looking into tools such as XSLT

Resolve technical challenges:
- Advisor agreed that the details of how the syntax specification files and

macros are formatted aren’t incredibly important to solidify this early in the
project.

- As for researching the process of going from a syntax specification and
source code file to a XML parse tree, the advisor is still a little confused on
our motivation, but is nonetheless pleased with the research and progress
made thus far.

Faculty Advisor Signature: ___________________________ Date: ___________



Evaluation by Faculty Advisor

Please detach and return this page to Dr. Chan (HC 209) or email the scores to
pkc@cs.fit.edu

TG = Tommy Galletta
AL = Alexander Lockard

TG 0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

AL 0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Faculty Advisor Signature: ___________________________ Date: ___________


