
GLASS Test Plan Document

Tests for Functional Requirements:

Unit Tests
- For each major component of the project (the syntax specification reader,

lexer, parser, parse tree to XML converter, and macro system), unit tests will
be written to ensure our code is written properly and is working as intended.

- Unit tests will be written not just for each component within the program,
but in some cases also for each individual method within a component.

- Unit tests will be split into two groups: general use and edge cases. General
use tests will simply be tests containing relatively standard or expected
input. Edge case tests will contain uncommon or otherwise unexpected
inputs to ensure that the program does not crash in the event that the user
inputs something unexpected, but rather that the error is correctly handled.

Tests for Interface Requirements:

Command Line Input and Output
- Similar to the unit tests above, a series of test input files will be created to

ensure that the command line interface works under a variety of conditions.
- Tests will include input files containing standard/expected inputs, edge case

correct inputs, and incorrect inputs. We want to ensure that all inputs,
regardless of if they are correct or incorrect, are handled in some way
beyond the program simply terminating.

- Test files will be made for both syntax specification files, corresponding
source code files, and macro files.

Command Line Automation
- Tests will be made to ensure that the program can complete certain tasks

semi-automatically when provided with command line arguments. This
includes automatically reading a syntax specification file, source code file,
and macro file all without intermediate user intervention.

- In cases where an error may occur, we will ensure that a proper error
message is thrown, and the program does not simply crash.



GUI Input and Output
- While more difficult to test (since it cannot be automated easily) we will test

our GUI with a variety of inputs.
- We will accumulate a list of inputs to test within our GUI application to

ensure that as the GUI is developed that all previously implemented features
remain functional and working as expected.

Tests for Performance Requirements:

Time efficiency tests:
- Several tests will be created for the sake of evaluating how the program

performs time-wise in several different scenarios. These scenarios may
include a large syntax specification with a small source code file, a small
syntax specification with a large source code file, a large syntax specification
with a large source code file, and a small syntax specification with a small
source code file.

- Several runs of different instances of each scenario will be run in order to
gather sufficient data for analysis.

- For consistency, all time efficiency tests will be executed on code01.

Memory efficiency tests:
- As with time efficiency, several tests will be created for the sake of evaluating

how to program performs in terms of memory consumption in several
different scenarios, including the ones described above for time efficiency
tests.

- Several runs of different instances of each scenario will be run in order to
gather sufficient data for analysis.

- All memory efficiency tests will be run on the same computer to ensure
consistency.

Tests for Other Requirements:

Compatibility
- For compatibility, we will make sure to run all of our tests on both Windows

and Linux to ensure nothing works unexpectedly on a particular operating
system.



Intuitiveness
- To gauge intuitiveness, we will perform user tests to see how quickly users

are able to perform certain tasks using our program.
- We will first give users a quick survey to gauge how familiar they are with

some of the concepts they may need to work with within our tool (grammars,
regex, XML)

- Users will be assigned a set of tasks, which they will have to perform one by
one. They will have the program documentation available to them to assist
them in completing the tasks.

- Completion times for each task will be grouped based on the familiarity the
user had with the concepts necessary for said tasks. Then, the completion
times for each task will be analyzed.


